Part Number Hot Search : 
FST20180 FA7703 TIP141 ADE05SA MSMP17A S503T SMV1845 KBU605
Product Description
Full Text Search
 

To Download A2I25D025NR1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  A2I25D025NR1 a2i25d025gnr1 1 rf device data freescale semiconductor, inc. rf ldmos wideband integrated power amplifiers the a2i25d025n wideband integrated circuit is designed with on--chip matching that makes it usable from 2100 to 2900 mhz. this multi--stage structure is rated for 26 to 32 v operation and covers all typical cellular base station modulation formats. ? typical single--carrier w--cdma characterization performance: v dd =28vdc,i dq1(a+b) =56ma,i dq2(a+b) = 136 ma, p out = 3.2 w avg., input signal par = 9.9 db @ 0.01% probability on ccdf. (1) frequency g ps (db) pae (%) acpr (dbc) 2300 mhz 32.0 19.0 ?46.7 2350 mhz 31.8 19.0 ?47.1 2400 mhz 31.7 19.1 ?47.5 2496 mhz 31.7 19.3 ?47.3 2600 mhz 32.0 19.5 ?47.1 2690 mhz 32.5 20.0 ?46.8 features ? on--chip matching (50 ohm input, dc blocked) ? integrated quiescent current te mperature compensation with enable/disable function (2) ? designed for digital predistortion error correction systems ? optimized for doherty applications figure 1. functional block diagram figure 2. pin connections note: exposed backside of the package is the source terminal for the transistors. quiescent current temperature compensation (2) v ds1a rf ina v gs1a rf out1 /v ds2a v gs2a quiescent current temperature compensation (2) v ds1b rf inb v gs1b rf out2 /v ds2b v gs2b v ds1a rf ina gnd rf inb rf out1 /v ds2a 1 2 3 4 7 8 15 v gs1b 9 10 11 v gs2a v gs1a n.c. n.c. v gs2b gnd v ds1b rf out2 /v ds2b 13 6 12 (top view) 5 14 gnd 16 17 vbw a vbw b 1. all data measured in fixture w ith device soldered to heatsink. 2. refer to an1977, quiescent current thermal tracking circ uit in the rf integrated circuit family , and to an1987, quiescent current control for the rf integrated circuit device family . go to http://www.freescale.com/rf . select documentation/application notes -- an1977 or an1987. document number: a2i25d025n rev. 0, 3/2015 freescale semiconductor technical data 2100?2900 mhz, 3.2 w avg., 28 v airfast rf ldmos wideband integrated power amplifiers A2I25D025NR1 a2i25d025gnr1 to--270wb--17 plastic A2I25D025NR1 to--270wbg--17 plastic a2i25d025gnr1 ? freescale semiconductor, inc., 2015. a ll rights reserved.
2 rf device data freescale semiconductor, inc. A2I25D025NR1 a2i25d025gnr1 table 1. maximum ratings rating symbol value unit drain--source voltage v dss ?0.5, +65 vdc gate--source voltage v gs ?0.5, +10 vdc operating voltage v dd 32, +0 vdc storage temperature range t stg ?65 to +150 ? c case operating temperature range t c ?40 to +150 ? c operating junction temperature range (1,2) t j ?40 to +225 ? c input power p in 20 dbm table 2. thermal characteristics characteristic symbol value (2,3) unit thermal resistance, junction to case case temperature 74 ? c, 3.2 w, 2496 mhz stage 1, 28 vdc, i dq1(a+b) =56ma stage 2, 28 vdc, i dq2(a+b) = 136 ma r ? jc 6.3 1.8 ? c/w table 3. esd protection characteristics test methodology class human body model (per jesd22--a114) 1b machine model (per eia/jesd22--a115) a charge device model (per jesd22--c101) ii table 4. moisture sensitivity level test methodology rating package peak temperature unit per jesd22--a113, ipc/jedec j--std--020 3 260 ? c table 5. electrical characteristics (t a =25 ? c unless otherwise noted) characteristic symbol min typ max unit stage 1 -- off characteristics (4) zero gate voltage drain leakage current (v ds =65vdc,v gs =0vdc) i dss ? ? 10 ? adc zero gate voltage drain leakage current (v ds =32vdc,v gs =0vdc) i dss ? ? 1 ? adc gate--source leakage current (v gs =1.0vdc,v ds =0vdc) i gss ? ? 1 ? adc stage 1 -- on characteristics gate threshold voltage (4) (v ds =10vdc,i d =2.5 ? adc) v gs(th) 0.8 1.2 1.6 vdc gate quiescent voltage (v ds =28vdc,i dq1(a+b) =59madc) v gs(q) ? 2.0 ? vdc fixture gate quiescent voltage (v dd =28vdc,i dq1(a+b) = 59 madc, measured in functional test) v gg(q) 4.6 5.3 6.1 vdc 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.freescale.com/rf . select software & tools/developm ent tools/calculators to access mttf calculators by product. 3. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes -- an1955. 4. each side of device measured separately. (continued)
A2I25D025NR1 a2i25d025gnr1 3 rf device data freescale semiconductor, inc. table 5. electrical characteristics (t a =25 ? c unless otherwise noted) (continued) characteristic symbol min typ max unit stage 2 -- off characteristics (1) zero gate voltage drain leakage current (v ds =65vdc,v gs =0vdc) i dss ? ? 10 ? adc zero gate voltage drain leakage current (v ds =32vdc,v gs =0vdc) i dss ? ? 1 ? adc gate--source leakage current (v gs =1.0vdc,v ds =0vdc) i gss ? ? 1 ? adc stage 2 -- on characteristics gate threshold voltage (1) (v ds =10vdc,i d =16 ? adc) v gs(th) 0.8 1.2 1.6 vdc gate quiescent voltage (v ds =28vdc,i dq2(a+b) = 157 madc) v gs(q) ? 1.9 ? vdc fixture gate quiescent voltage (v dd =28vdc,i dq2(a+b) = 157 madc, measured in functional test) v gg(q) 4.3 5.0 5.8 vdc drain--source on--voltage (1) (v gs =10vdc,i d = 200 madc) v ds(on) 0.1 0.22 1.5 vdc functional tests (2,3) (in freescale production test fixture, 50 ohm system) v dd =28vdc,i dq1(a+b) =59ma,i dq2(a+b) = 157 ma, p out = 3.2 w avg., f = 2690 mhz, single--carrier w--cdma, iq magni tude clipping, input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ ? 5mhzoffset. power gain g ps 30.5 31.9 34.5 db power added efficiency pae 18.0 19.7 ? % load mismatch (in freescale production test fixture, 50 ohm system) i dq1(a+b) =59ma,i dq2(a+b) = 157 ma, f = 2600 mhz vswr 10:1 at 32 vdc, 36.3 w cw output power (3 db input overdrive from 25 w cw rated power) no device degradation typical performance (4) (in freescale characterization test fixture, 50 ohm system) v dd =28vdc,i dq1(a+b) =56ma,i dq2(a+b) = 136 ma, 2300?2690 mhz bandwidth p out @ 1 db compression point, cw p1db ? 24 ? w p out @ 3 db compression point, cw (5) p3db ? 35.5 ? w am/pm (maximum value measured at the p3db compression point across the 2300?2690 mhz frequency range.) ? ? ?9.0 ? ? vbw resonance point (imd third order intermodulation inflection point) vbw res ? 170 ? mhz quiescent current accuracy over temperature (6) with 4.7 k ? gate feed resistors (?30 to 85 ? c) stage 1 with 4.7 k ? gate feed resistors (?30 to 85 ? c) stage 2 ? i qt ? ? 2.43 1.13 ? ? % gain flatness in 390 mhz bandwidth @ p out =3.2wavg. g f ? 0.8 ? db gain variation over temperature (?30 ? cto+85 ? c) ? g ? 0.036 ? db/ ? c output power variation over temperature (?30 ? cto+85 ? c) ? p1db ? 0.004 ? db/ ? c table 6. ordering information device tape and reel information package A2I25D025NR1 r1 suffix = 500 units, 44 mm tape width, 13--inch reel to--270wb--17 a2i25d025gnr1 to--270wbg--17 1. each side of device measured separately. 2. part internally input and output matched. 3. measurements made with device in straight lead configuration before any lead forming oper ation is applied. lead forming is used for gull wing (gn) parts. 4. all data measured in fixture w ith device soldered to heatsink. 5. p3db = p avg + 7.0 db where p avg is the average output power measured using an uncli pped w--cdma single--carrier input signal where output par is compressed to 7.0 db @ 0.01% probability on ccdf. 6. refer to an1977, quiescent current thermal tracking circ uit in the rf integrated circuit family , and to an1987, quiescent current control for the rf integrated circuit device family . go to http://www.freescale.com/rf . select documentation/application notes -- an1977 or an1987.
4 rf device data freescale semiconductor, inc. A2I25D025NR1 a2i25d025gnr1 figure 3. A2I25D025NR1 production test circuit component layout v dd2a a2i25d025n rev. p1 d62771 v dd2b v dd1b v gg2b v gg1b v gg1a v gg2a v dd1a z1 z2 r1 r2 r5 r3 r4 c1 c2 c7 c8 c9 c10 c11 c13 c14 c12 c17 c18 c3 c4 c15 c16 c19 c21 c20 c22 c5 c6 r6 cut out area table 7. A2I25D025NR1 production test circuit component designations and values part description part number manufacturer c1, c2 0.9 pf chip capacitors atc600f0r9bt250xt atc c3, c4 15 pf chip capacitors atc600f150jt250xt atc c5, c6 30 pf chip capacitors atc600f300jt250xt atc c7, c8, c9, c10, c15, c16, c19, c20 4.7 ? f chip capacitors grm31cr71h475ka12l murata c11, c12, c17, c18, c21, c22 10 ? f chip capacitors grm31cr61h106ka12l murata c13, c14 1 ? f chip capacitors grm31mr71h105ka88l murata r1, r4 4.7 k ? chip resistors crcw12064k70fkea vishay r2, r3 2.2 k ? , 1/4 w chip resistors crcw12062k20fkea vishay r5, r6 50 ? , 10 w chip resistors 060120a15z50--2 anaren z1, z2 2300?2900 mhz band, 3 db hybrid couplers x3c26p1-03s anaren pcb rogers ro4350b, 0.020 ? , ? r =3.66 d62771 mtl
A2I25D025NR1 a2i25d025gnr1 5 rf device data freescale semiconductor, inc. figure 4. A2I25D025NR1 characterization test circuit component layout v dd2a a2i25d025n rev. 2 d62833 q1 v dd2b v dd1b v gg2b v gg1b v gg1a v gg2a v dd1a r1 r3 r5 z1 z2 r2 r4 c1 c2 c5 c7 c9 c11 c6 c8 c12 c10 c13 c15 c14 c16 c3 c4 r6 note: all data measured in fixture w ith device soldered to heatsink. table 8. A2I25D025NR1 characterization test circuit component designations and values part description part number manufacturer c1, c2 0.9 pf chip capacitors atc600f0r9bt250xt atc c3, c4 20 pf chip capacitors atc600f200jt250xt atc c5, c6, c7, c8, c15, c16 4.7 ? f chip capacitors grm31cr71h475ka12l murata c9, c10, c13, c14 10 ? f chip capacitors grm31cr61h106ka12l murata c11, c12 1.0 ? f chip capacitors grm31mr71h105ka88l murata q1 rf ldmos power amplifier A2I25D025NR1 freescale r1, r2 2.2 k ? , 1/4 w chip resistors crcw12062k20fkea vishay r3, r4 4.7 k ? , 1/4 w chip resistors crcw12064k70fkea vishay r5, r6 50 ? , 8 w chip resistors c8a50z4a anaren z1, z2 2300?2900 mhz band, 3 db hybrid couplers x3c26p1-03s anaren pcb rogers ro4350b, 0.020 ? , ? r =3.66 d62833 mtl
6 rf device data freescale semiconductor, inc. A2I25D025NR1 a2i25d025gnr1 typical characteristics parc (db) -- 0 . 8 -- 0 . 4 -- 0 . 5 -- 0 . 6 -- 0 . 7 -- 0 . 9 2300 f, frequency (mhz) figure 5. single--carrier output peak--to--average ratio compression (parc) broadband performance @ p out = 3.2 watts avg. 31 33 32.8 32.6 -- 4 8 20.5 20 19.5 19 --45.5 -- 4 6 --46.5 -- 4 7 pae, power added efficiency (%) g ps , power gain (db) 32.4 32.2 32 31.8 31.6 31.4 31.2 2350 2400 2450 2500 2550 2600 2650 2700 18.5 --47.5 acpr (dbc) figure 6. intermodulation distortion products versus two--tone spacing two--tone spacing (mhz) 10 -- 7 0 -- 1 0 -- 2 0 -- 3 0 -- 5 0 1 300 imd, intermodulatio n distortion (dbc) -- 4 0 figure 7. output peak--to--average ratio compression (parc) versus output power p out , output power (watts) -- 1 -- 3 4 0 -- 2 -- 4 output compression at 0.01% probability on ccdf (db) 26812 10 40 35 30 25 20 15 pae, power added efficiency (%) 10 acpr parc acpr (dbc) -- 5 0 -- 2 0 -- 2 5 -- 3 0 -- 4 0 -- 3 5 -- 4 5 32.2 g ps , power gain (db) 32 31.8 31.6 31.4 31.2 31 g ps -- 5 1 acpr parc g ps im7--l im7--u im3--l 100 --1db=3.6w --2db=5.4w --3db=7.2w im3--u v dd =28vdc,i dq1(a+b) =56ma,i dq2(a+b) = 136 ma f = 2590 mhz, single--carrier w--cdma 3.84 mhz channel bandwidth, input signal par = 9.9 db @ 0. 01% probab ility on ccdf v dd =28vdc,p out =3.2w(avg.),i dq1(a+b) =56ma i dq2(a+b) = 136 ma, single--carrier w--cdma 3.84 mhz channel bandwidth pae pae v dd =28vdc,p out = 13.5 w (pep), i dq1(a+b) =56ma i dq2(a+b) = 136 ma, two--tone measurements (f1 + f2)/2 = center frequency of 2590 mhz im5--u im5--l -- 6 0 input signal par = 9.9 db @ 0.01% probabilit y on ccdf
A2I25D025NR1 a2i25d025gnr1 7 rf device data freescale semiconductor, inc. typical characteristics 1 p out , output power (watts) avg. figure 8. single--carrier w--cdma power gain, power added efficiency and acpr versus output power ? 2496?2690 mhz -- 1 0 -- 2 0 24 36 0 60 50 40 30 20 g ps , power gain (db) 34 32 10 50 10 -- 6 0 acpr (dbc) 30 28 26 0 -- 3 0 -- 4 0 -- 5 0 acpr 2590 mhz v dd =28vdc,i dq1(a+b) =56ma,i dq2(a+b) = 136 ma single--carrier w--cdma, 3.84 mhz channel bandwidth input signal par = 9.9 d b @ 0.01% pr obabilit y on ccdf g ps 2690 mhz 2690 mhz 2590 mhz 2496 mhz 2496 mhz 2590 mhz 2690 mhz pae pae, power added efficiency (%) 2496 mhz 1 p out , output power (watts) avg. figure 9. single--carrier w--cdma power gain, power added efficiency and acpr versus output power ? 2300?2400 mhz -- 1 0 -- 2 0 24 36 0 60 50 40 30 20 g ps , power gain (db) 34 32 10 50 10 -- 6 0 acpr (dbc) 30 28 26 0 -- 3 0 -- 4 0 -- 5 0 acpr g ps pae pae, power added efficiency (%) 2400 mhz 2350 mhz 2300 mhz v dd =28vdc,i dq1(a+b) =56ma,i dq2(a+b) = 136 ma single--carrier w--cdma, 3.84 mhz channel bandwidth, input signal par = 9.9 db @ 0.01% probabilit y on ccdf 2300 mhz 2400 mhz 2350 mhz 2300 mhz 2350 mhz 2400 mhz figure 10. broadband frequency response 24 36 f, frequency (mhz) v dd =28vdc p in =0dbm i dq1(a+b) =56ma i dq2(a+b) = 136 ma 32 30 28 gain (db) 34 26 1500 1750 2000 2250 2500 2750 3500 gain 3000 3250 note: frequency response at band edges limited by hybrid couplers.
8 rf device data freescale semiconductor, inc. A2I25D025NR1 a2i25d025gnr1 table 9. load pull performance ? maximum power tuning v dd =28vdc,i dq1(a) =29ma , i dq2(a) =75ma , pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max output power p1db z load (1) ( ? ) gain (db) (dbm) (w) pae (%) am/pm ( ? ) 2300 35.0 + j9.89 36.0 ? j13.0 10.4 ? j9.63 30.4 42.6 18 59.0 ?2 2350 43.2 + j11.9 41.9 ? j16.8 10.8 ? j11.0 30.5 42.5 18 56.9 ?2 2400 45.8 + j23.1 43.5 ? j26.0 10.6 ? j8.31 30.7 42.3 17 57.2 ?3 2496 43.9 + j37.9 40.7 ? j37.0 10.1 ? j8.37 31.0 42.6 18 60.5 ?3 2590 33.1 + j43.7 31.4 ? j41.4 9.32 ? j9.38 31.0 42.7 19 60.9 ?3 2690 29.5 + j41.2 28.0 ? j37.3 7.84 ? j9.97 30.7 42.7 18 60.8 ?4 f (mhz) z source ( ? ) z in ( ? ) max output power p3db z load (2) ( ? ) gain (db) (dbm) (w) pae (%) am/pm ( ? ) 2300 35.0 + j9.89 37.3 ? j16.5 9.84 ? j10.3 28.2 43.3 21 59.2 ?6 2350 43.2 + j11.9 41.5 ? j20.9 10.6 ? j11.4 28.5 43.2 21 58.3 ?7 2400 45.8 + j23.1 41.0 ? j29.4 10.6 ? j8.89 28.6 43.1 21 58.9 ?8 2496 43.9 + j37.9 37.0 ? j37.7 10.3 ? j9.50 28.8 43.4 22 61.4 ?8 2590 33.1 + j43.7 28.2 ? j40.5 9.50 ? j10.2 28.9 43.5 23 61.3 ?8 2690 29.5 + j41.2 25.3 ? j35.2 8.12 ? j11.0 28.5 43.4 22 61.6 ?11 (1) load impedance for optimum p1db power. (2) load impedance for optimum p3db power. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. note: measurement made on a per side basis. input load pull tuner and test circuit device under test z source z in z load output load pull tuner and test circuit
A2I25D025NR1 a2i25d025gnr1 9 rf device data freescale semiconductor, inc. table 10. load pull performance ? maximum power added efficiency tuning v dd =28vdc,i dq1(a) =29ma , i dq2(a) =75ma , pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max power added efficiency p1db z load (1) ( ? ) gain (db) (dbm) (w) pae (%) am/pm ( ? ) 2300 35.0 + j9.89 38.0 ? j10.9 18.2 ? j1.09 31.8 40.8 12 67.0 ?6 2350 43.2 + j11.9 45.1 ? j14.7 16.1 ? j0.71 31.9 40.9 12 64.2 ?6 2400 45.8 + j23.1 46.9 ? j26.5 14.9 ? j0.56 31.9 41.1 13 65.4 ?5 2496 43.9 + j37.9 42.8 ? j38.7 12.1 ? j2.47 31.9 41.6 14 67.5 ?6 2590 33.1 + j43.7 32.9 ? j44.4 9.72 ? j2.39 32.1 41.3 14 68.8 ?7 2690 29.5 + j41.2 28.3 ? j41.3 7.82 ? j4.78 31.8 41.4 14 67.9 ?9 f (mhz) z source ( ? ) z in ( ? ) max power added efficiency p3db z load (2) ( ? ) gain (db) (dbm) (w) pae (%) am/pm ( ? ) 2300 35.0 + j9.89 38.7 ? j13.1 17.2 ? j2.23 29.7 41.7 15 66.7 ?11 2350 43.2 + j11.9 44.6 ? j17.7 15.8 ? j2.22 29.8 41.9 15 64.7 ?9 2400 45.8 + j23.1 45.2 ? j28.8 14.2 ? j0.88 29.9 41.9 15 65.7 ?10 2496 43.9 + j37.9 40.4 ? j39.4 11.9 ? j2.47 29.9 42.3 17 67.9 ?11 2590 33.1 + j43.7 30.3 ? j43.9 9.68 ? j2.97 30.0 42.1 16 68.5 ?12 2690 29.5 + j41.2 25.7 ? j39.0 7.97 ? j5.65 29.7 42.4 17 67.4 ?15 (1) load impedance for optimum p1db efficiency. (2) load impedance for optimum p3db efficiency. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. note: measurement made on a per side basis. input load pull tuner and test circuit device under test z source z in z load output load pull tuner and test circuit
10 rf device data freescale semiconductor, inc. A2I25D025NR1 a2i25d025gnr1 p1db -- typical load pull contours ? 2590 mhz figure 11. p1db load pull output power contours (dbm) real ( ? ) -- 1 4 0 -- 4 ima g inary ( ? ) 810 12 4 16 -- 2 -- 8 -- 1 0 614 -- 6 note: = maximum output power = maximum power added efficiency p e gain power added efficiency linearity output power figure 12. p1db load pull efficiency contours (%) real ( ? ) figure 13. p1db load pull gain contours (db) real ( ? ) figure 14. p1db load pull am/pm contours ( ? ) real ( ? ) -- 1 2 -- 1 4 0 -- 4 imaginary ( ? ) 810 12 4 16 -- 2 -- 8 -- 1 0 614 -- 6 -- 1 2 -- 1 4 0 -- 4 ima g inary ( ? ) 810 12 4 16 -- 2 -- 8 -- 1 0 614 -- 6 -- 1 2 -- 1 4 0 -- 4 imaginary ( ? ) 810 12 4 16 -- 2 -- 8 -- 1 0 614 -- 6 -- 1 2 40.5 41 p e 41.5 42 42.5 41 40.5 40 39.5 p e 52 56 54 58 60 62 64 66 68 29 29.5 p e 30 30.5 31 31.5 32 28.5 -- 1 0 -- 1 2 -- 1 4 -- 4 -- 6 -- 8 p e
A2I25D025NR1 a2i25d025gnr1 11 rf device data freescale semiconductor, inc. p3db -- typical load pull contours ? 2590 mhz figure 15. p3db load pull output power contours (dbm) real ( ? ) -- 1 4 0 -- 4 ima g inary ( ? ) 810 12 4 16 -- 2 -- 8 -- 1 0 614 -- 6 note: = maximum output power = maximum power added efficiency p e gain power added efficiency linearity output power figure 16. p3db load pull efficiency contours (%) real ( ? ) figure 17. p3db load pull gain contours (db) real ( ? ) figure 18. p3db load pull am/pm contours ( ? ) real ( ? ) -- 1 2 -- 1 4 0 -- 4 imaginary ( ? ) 810 12 4 16 -- 2 -- 8 -- 1 0 614 -- 6 -- 1 2 -- 1 4 0 -- 4 ima g inary ( ? ) 810 12 4 16 -- 2 -- 8 -- 1 0 614 -- 6 -- 1 2 -- 1 4 0 -- 4 imaginary ( ? ) 810 12 4 16 -- 2 -- 8 -- 1 0 614 -- 6 -- 1 2 p e 40.5 40 41 41.5 42 42.5 43 43.5 p e 52 54 56 58 60 62 64 66 68 27.5 27 p e 26.5 28 28.5 29 29.5 30 p e -- 6 -- 1 0 -- 8 -- 1 2 -- 1 4 -- 1 6 -- 1 8 -- 2 0 -- 2 2
12 rf device data freescale semiconductor, inc. A2I25D025NR1 a2i25d025gnr1 package dimensions
A2I25D025NR1 a2i25d025gnr1 13 rf device data freescale semiconductor, inc.
14 rf device data freescale semiconductor, inc. A2I25D025NR1 a2i25d025gnr1
A2I25D025NR1 a2i25d025gnr1 15 rf device data freescale semiconductor, inc.
16 rf device data freescale semiconductor, inc. A2I25D025NR1 a2i25d025gnr1
A2I25D025NR1 a2i25d025gnr1 17 rf device data freescale semiconductor, inc.
18 rf device data freescale semiconductor, inc. A2I25D025NR1 a2i25d025gnr1 product documentation, software and tools refer to the following resources to aid your design process. application notes ? an1955: thermal measurement methodology of rf power amplifiers ? an1977: quiescent current thermal tracking circuit in the rf integrated circuit family ? an1987: quiescent current control for the rf integrated circuit device family engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices software ? electromigration mttf calculator ? rf high power model ? .s2p file development tools ? printed circuit boards for software and tools, do a part number search at http://www .freescale.com, and select th e ?part number? link. go to software & tools on the part?s product summary page to download the respective tool. revision history the following table summarizes revisions to this document. revision date description 0 mar. 2015 ? initial release of data sheet
A2I25D025NR1 a2i25d025gnr1 19 rf device data freescale semiconductor, inc. information in this document is provided solely to enable system and software implementers to use freescale products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. freescale reserves the right to make changes without further notice to any products herein. freescale makes no warranty, representation, or guarantee regarding the suitability of its products fo r any particular purpose, nor does freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all li ability, including without limit ation consequential or incidental damages. ?typical? parameters that may be provided in freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. all operating parameters, including ?typicals,? must be validated for each customer application by customer?s technical experts. freescale does not convey any license under its patent rights nor the rights of others. freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/salestermsandconditions. freescale and the freescale logo are trademarks of freescale semiconductor, inc., reg. u.s. pat. & tm. off. airfast is a trademark of freescale semiconductor, inc. all other product or service names are the property of their respective owners. e 2015 freescale semiconductor, inc. how to reach us: home page: freescale.com web support: freescale.com/support document number: a2i25d025n rev. 0, 3/2015


▲Up To Search▲   

 
Price & Availability of A2I25D025NR1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X